Sieving intervals and Siegel zeros

نویسندگان

چکیده

Assuming that there exist (infinitely many) Siegel zeros, we show the (Rosser–)Jurkat–Richert bounds in linear sieve cannot be improved, and similarly look at Iwaniec’s lower bound on Jacobsthal’s problem, as well minor improvements to Bru

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Zeros of Holomorphic Hecke Cusp Forms and Sieving Short Intervals

We study so-called real zeros of holomorphic Hecke cusp forms, that is zeros on three geodesic segments on which the cusp form (or a multiple of it) takes real values. Ghosh and Sarnak, who were the first to study this problem, showed that existence of many such zeros follows if many short intervals contain numbers whose all prime factors belong to a certain subset of the primes. We prove new r...

متن کامل

Siegel zeros of Eisenstein series

(m,n)6=(0,0) y |mz+n|2s is the nonholomorphic Eisenstein series on the upper half plane, then for all y sufficiently large, E(z, s) has a ”Siegel zero.” That is E(z, β) = 0 for a real number β just to the left of one. We give a generalization of this result to Eisenstein series formed with real valued automorphic forms on a finite central covering of the adele points of a connected reductive al...

متن کامل

Some Remarks on Landau-siegel Zeros

In this paper we show that, under the assumption that all the zeros of the L-functions under consideration are either real or lie on the critical line, one may considerably improve on the known results on Landau-Siegel zeros.

متن کامل

Landau-siegel Zeros and Zeros of the Derivative of the Riemann Zeta Function

We show that if the derivative of the Riemann zeta function has sufficiently many zeros close to the critical line, then the zeta function has many closely spaced zeros. This gives a condition on the zeros of the derivative of the zeta function which implies a lower bound of the class numbers of imaginary quadratic fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2022

ISSN: ['0065-1036', '1730-6264']

DOI: https://doi.org/10.4064/aa201002-25-6